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Abstract For non-normal Pearsonian processes, Clements proposed a method for calculating
estimators of the two basic process capability indices Cp and Cpk. Pearn and Kotz applied Clements'
method to obtain estimators for the other two more advanced process capability indices Cpm and Cpmk.
Their considerations on those indices, however, are restricted to processes with symmetric tolerances.
Recently, Pearn and Chen proposed a generalization of the index Cpk to handle cases with asymmetric
tolerances. The generalization takes into account the asymmetry of the manufacturing specifications,
which is shown to be superior to the other existing methods. In this paper, we apply this approach and
consider a generalization of Clements' method for non-normal Pearsonian processes where the
manufacturing tolerances are asymmetric. Comparisons between the original Clements' method and
the proposed generalization are provided. The results indicate that the generalization is more accurate
than the original Clements' method in measuring process capability.

1. Introduction
Process capability indices (PCIs) have been widely used in the manufacturing
industry, to provide numerical measures on whether a process is capable of
producing items meeting the quality requirement preset in the factory. Numerous
capability indices have been proposed to measure process potential and
performance. Examples include the two most commonly used indices Cp and Cpk

discussed in Kane (1986), and the two more-advanced indices Cpm and Cpmk

developed by Chan et al. (1988), and Pearn et al. (1992). There are many other
indices, but they can be viewed as modifications of these four basic capability
indices. The indices Cp, Cpk, Cpm, and Cpmk can be defined as the following:

Cp � USLÿ LSL

6�;

Cpk � min
USLÿ �

3�
;
�ÿ LSL

3�

� �
;
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Cpm � USLÿ LSL

6

�����������������������������
�2 � ��ÿ T�2

q
;

Cpmk � min
USLÿ �

3

�����������������������������
�2 � ��ÿ T�2

q ;
�ÿ LSL

3

�����������������������������
�2 � ��ÿ T�2

q
8><>:

9>=>;;
where USL is the upper specification limit, LSL is the lower specification limits, �
is the process mean, � is the process standard deviation, and T is the target value.
While Cp measures the overall process variation relative to the specification
tolerance, Cpk takes into account the proximity of the process mean to the center of
the specification tolerance as well as the process variation in the assessment of
process performance, which is essentially a measure of the process yield. In fact,
the process yield can be calculated as 2� (3Cpk) ± 1 < Yield < �(3Cpk) if the process
follows the normal distribution, where � (�) is the cumulative function for the
standard normal distribution. On the other hand, Cpm and Cpmk take into account
the proximity of the process mean to the target (rather than the center), which are
more sensitive to the process departure than Cp and Cpk.

Discussions and analysis of the four basic indices on point estimation, the
construction of confidence intervals, and the testing hypothesis on process
capability for decision-making purposes, have been the focus of many
statistician and quality researchers including Chan et al. (1988), Chou et al.
(1989), Pearn et al. (1992), Kushler and Hurley (1992), Franklin and Wasserman
(1992), VaÈnnman (1994), Pearn and Chen (1995; 1998), and many others. Most of
the investigations, however, depend heavily on the assumption of normal
variability. If the underlying distributions are non-normal, then the capability
calculations are highly unreliable since the conventional estimator S2 of �2 is
sensitive to departures from normality, and estimators of those indices are
calculated using S2. In fact, Gunter (1989) demonstrated the strong impact this
has on the sampling distribution of the natural estimator of Cpk. Therefore, the
natural (conventional) estimators of those basic indices are inappropriate for
non-normal processes.

For non-normal distributions, Clements (1989) and Pearn and Kotz (1994)
considered a method for calculating estimators of those indices assuming that
the process follows the Pearsonian distribution. But their considerations are
restricted to processes with symmetric tolerances. In this paper, we consider a
generalization of their method to handle cases with asymmetric tolerances. The
generalization takes into account the asymmetry of the tolerances, which is more
sensitive than the original Clements' and the modified Clements' methods in
detecting process shift. The results also show that the proposed generalization is
more accurate than the original Clements' and the modified Clements' methods in
measuring process capability. An example on the MOSFET manufacturing
process, illustrating how we may apply the proposed generalization, is provided.
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2. Clements' method
For non-normal Pearsonian distributions (which include a rich class of
populations with non-normal characteristics), Clements (1989) proposed a
method for calculating estimators of Cp and Cpk. Pearn and Kotz (1994) applied
Clements' method to obtain estimators for the other two basic indices, Cpm and
Cpmk. Those estimators have been defined as:

Ĉp � USLÿ LSL

Up ÿ Lp
;

Ĉpk � min
USLÿM

Up ÿM
;
M ÿ LSL

M ÿ Lp

� �
;

Ĉpm � USLÿ LSL

6
����������������������������������������
�UpÿLp

6 �2 � �M ÿ T�2
q

;

Ĉpmk � min
USLÿM

3
����������������������������������������
�UpÿM

3 �2 � �M ÿ T�2
q ;

M ÿ LSL

3

���������������������������������������
MÿLp

3

h i2

��M ÿ T�2
r

g;

8>><>>:
where Up and Lp are the 99.865 and the 0.135 percentiles determined from
Gruska et al. table (1989) for the particular values of mean, variance, skewness,
and kurtosis calculated from the sample data. For the indices Cp and Cpm,
Clements' estimators are obtained by replacing the 6� by Up ± Lp.

For the indices Cpk and Cpmk, Clements' estimators are obtained by
replacing the two 3� by Up ± M and M ± Lp respectively for the right-hand
and left-hand sides. We note that the process mean � is also replaced by the
process median M since the process median is a more robust measure of
central tendency than the process mean, particularly for skewed
distributions with long tails. The idea behind such replacements is to mimic
the property of the normal distribution for which the tail probability outside
the �3� limits from � is 0.27 percent thus assuring that if the calculated
value of Cp = 1 (assuming the process is well-centered), then the probability
that process is outside the specification limits (LSL, USL) will be negligibly
small.

To improve the accuracy of Clements' method in measuring the process
capability, Pearn and Chen (1995) considered the following modification which
replaces the � by (Up ± Lp)/6 for all cases regardless of whether it is on the right-
hand side or left-hand side. Thus, Clements' estimators become:

Ĉ0p �
USLÿ LSL

Up ÿ Lp
;
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Ĉ0pk � min
USLÿM

�Up ÿ Lp�=2
;

M ÿ LSL

�Up ÿ Lp�=2

� �
;

Ĉ0pm �
USLÿ LSL

6
����������������������������������������
�UpÿLp

6 �2 � �M ÿ T�2
q ;

Ĉ0pmk � min
USLÿM

3
����������������������������������������
�UpÿLp

6 �2 � �M ÿ T�2
q ;

M ÿ LSL

3
����������������������������������������
�UpÿLp

6 �2 � �M ÿ T�2
q

8><>:
9>=>;;

To illustrate how the modified estimators outperform the original Clements'
estimators, Pearn and Chen (1995) considered an example of three processes
with one on-target and the other two off-target. While Clements' estimators
show little sensitivity to the departure of the process median from the target
value, the modified estimators clearly differentiate the on-target process from
the other two (severely) off-target processes.

3. A generalization for asymmetric tolerances
Although cases with symmetric tolerances (USL ± T = T ± LSL) are quite
common in practical situations, there are other situations where the
tolerances are asymmetric (USL ± T = T ± LSL). For asymmetric tolerances,
Kane (1986) considered a method which shifts one of the two specification
limits so that the shifted specification limits are symmetric to the target value
T. The method transforms the original specifications (LSL, T, LSL) into (T ±
min{USL ± T, T ± LSL}, T, T + min{USL ± T, T ± LSL}). Kushler and Hurley
(1992) considered a different method which shifts both of the two
specification limits so that the shifted specification limits are symmetric to
the target value T. The method transforms the specifications (LSL, T, LSL)
into (T ± [USL ± LSL]/2, T, T + [USL ± LSL]/2). These two methods are
straightforward to apply. Unfortunately, these two methods can severely
understate or overstate process capability (Pearn and Chen, 1998), thus
reflecting process performance inaccurately. Consequently, they are
inappropriate for processes with asymmetric tolerances.

To overcome the problem, VaÈnnman (1997) considered an alternative
method to handle cases with asymmetric tolerances. The method modifies the
basic indices by adding a new term |� ± T| in the numerator of the definitions.
Pearn et al. (1998) investigated VaÈnnman's method, and pointed out that this
method can severely understate or overstate process capability. Therefore,
VaÈnman's method is not appropriate for processes with asymmetric tolerances.
Recently, Pearn and Chen (1998) considered a new method, and obtained a
generalization of Cpk for asymmetric tolerances. The method takes into account
the asymmetry of the corresponding loss function, which is shown to be
superior to the other existing methods. In this paper, we apply this method and
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consider a generalization of Clements' method for non-normal Pearsonian
processes where the tolerances are asymmetric. Comparisons between the
original Clements' method and the proposed generalization are provided. The
generalizations are defined as:

Ĉ00p �
2� d�

Up ÿ Lp
;

Ĉ00pkmin
USLÿM

�Up ÿ Lp�=2
� d�

du
;

M ÿ LSL

�Up ÿ Lp�=2
� d�

dl

� �
;

Ĉ00pm �
2� d�

6
�������������������������
�UpÿLp

6 �2 � a2

q ;

Ĉ00pmk � min
USLÿM

3

������������������������
UpÿLp

6

h i2

�a2

r � d�

du
;

M ÿ LSL

3

������������������������
UpÿLp

6

h i2

�a2

r � d�

dl

8>><>>:
9>>=>>;;

where d* = min {du, dl} , du = USL ± T, dl = T ± LSL, d = (USL ± LSL)/2, and
a = max{d (M ± T)/du, d (T ± M)/dl}. Clearly, if T = m (symmetric case) then
a = |M ± T| and the new estimators Ĉ00p , Ĉ00pk, Ĉ00pm, Ĉ00pmk reduce to the
modified estimators Ĉ0p, Ĉ0pk, Ĉ0pm and Ĉ0pmk considered by Pearn and Chen
(1995). The factors d* and a ensure that the new estimators obtain their
maximal value at M = T regardless of whether the tolerances are symmetric
or asymmetric.

For processes with asymmetric tolerances, the corresponding loss function is
also asymmetric to the target value T. Figure 1 displays a typical loss function
for processes with asymmetric tolerances. The loss function depicted in Figure
1 (assumed quadratic, a popular one considered in many applications) is
defined in the following with value setting to 1 for x falling outside the
manufacturing specification limits, LSL and USL.

LSL T USL

X1 X2

Figure 1.
An asymmetric loss

function
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L�x� � T ÿ x

T ÿ LSL

� �2

; LSL < x � T;

� xÿ T

USLÿ T

� �2

; T � x < USL;

� 1; otherwise

We note that for the mid-point of the left-hand side tolerance, x1 = (T + LSL)/2
and the mid-point of the right-hand side tolerance, x2 = (T + USL)/2, the
corresponding loss can be calculated as:

L�x1� � T ÿ x1

T ÿ LSL

� �2

� T ÿ LSL�T
2

T ÿ LSL

" #2

� 1

4
;

L�x2� � x2 ÿ T

USLÿ T

� �2

�
USL�T

2 ÿT

USLÿ T

" #
� 1

4
:

Obviously, the two points x1 and x2 have the same departure ratio (relative
departure) k � �T ÿ x1�=dl � �x2 ÿ T�=du � 1=2. Checking the process loss
at x1 and x2;we have L�x1� � L�x2� = 1/4.

4. Performance comparisons
To illustrate how the new generalizations incorporate the asymmetric loss
function, we consider the following example with asymmetric tolerance (LSL,
T, USL) = (15, 45, 60), with fixed process variations Up ± Lp = 0.8d, Up ± M =
0.5d, and M ± Lp = 0.3d, where 15 � M �60. Tables I, II and III display the
values of the original Clements' estimators, Ĉp; Ĉpk; Ĉpm; Ĉpmk; the modified
Clements' estimators, Ĉ0p; Ĉ0pk; Ĉ0pm; Ĉ0pmk and the new estimators, Ĉ00p ; Ĉ00pk;
Ĉ00pm and Ĉ00pmk for those processes. We note that the new estimators Ĉ00p ; Ĉ00pk;
Ĉ00pm and Ĉ00pmk obtain their maximal values at the target value T = 45.

Table IV summarizes the values of the new estimators obtained for
processes with equal departure ratio, thus satisfying the condition (MA ± T )/Du

= (T ± MB)/Dl). For example, consider processes A and B with MA = 50 and MB

= 35. It is easy to verify that for processes A and B (MA ± T)/Du = (50 ± 45)/15 =
1/3, and (T ± MB)/Dl = (45 ± 35)/30 = 1/3, thus satisfying (MA ± T )/Du = (T ±
MB)/Dl. Process loss for A and B would be the same in this case. Checking
Table IV, we have the same index values for both processes A and B.
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To further show how the new estimators outperform the other estimators in
detecting the process shifting, we consider the following example with the on-
target process A, and three shifted processes A1, A2, and A3, where the

M Ĉp Ĉpk Ĉpm Ĉpmk

15 2.500 0.000 0.249 0.000
16 2.500 0.148 0.257 0.011
17 2.500 0.296 0.266 0.024
18 2.500 0.444 0.276 0.037
19 2.500 0.593 0.287 0.051
20 2.500 0.741 0.298 0.066
21 2.500 0.889 0.310 0.083
22 2.500 1.037 0.323 0.101
23 2.500 1.185 0.338 0.121
24 2.500 1.333 0.354 0.142
25 2.500 1.481 0.371 0.166
26 2.500 1.630 0.390 0.192
27 2.500 1.778 0.411 0.221
28 2.500 1.926 0.434 0.253
29 2.500 2.074 0.461 0.289
30 2.500 2.222 0.490 0.330
31 2.500 2.370 0.524 0.376
32 2.500 2.489 0.562 0.430
33 2.500 2.400 0.606 0.491
34 2.500 2.311 0.658 0.564
35 2.500 2.222 0.718 0.650
36 2.500 2.133 0.791 0.755
37 2.500 2.044 0.878 0.868
38 2.500 1.956 0.985 0.923
39 2.500 1.867 1.118 0.989
40 2.500 1.778 1.286 1.067
41 2.500 1.689 1.500 1.155
42 2.500 1.600 1.768 1.249
43 2.500 1.511 2.080 1.333
44 2.500 1.422 2.372 1.374
45 2.500 1.333 2.500 1.333
46 2.500 1.244 2.372 1.202
47 2.500 1.156 2.080 1.020
48 2.500 1.067 1.768 0.833
49 2.500 0.978 1.500 0.669
50 2.500 0.889 1.286 0.533
51 2.500 0.800 1.118 0.424
52 2.500 0.711 0.985 0.336
53 2.500 0.622 0.878 0.264
54 2.500 0.533 0.791 0.205
55 2.500 0.444 0.718 0.156
56 2.500 0.356 0.658 0.115
57 2.500 0.267 0.606 0.080
58 2.500 0.178 0.562 0.049
59 2.500 0.089 0.524 0.023
60 2.500 0.000 0.490 0.000

Table I.
Values of Ĉp; Ĉpk; Ĉpm;
and Ĉpmk for processes
with T = 45, Up ÿ Lp

= 0.8d, Up ± M = 0.5d,
M ± Lp = 0.3d and

15 � M � 60
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manufacturing tolerance (LSL, T, USL) = (20, 50, 60). Figure 2(a) displays the
histogram of the data from the on-target process A. Figure 2(b) displays the

M Ĉ0p Ĉ0pk Ĉ0pm Ĉ0pmk

15 2.500 0.000 0.249 0.000
16 2.500 0.111 0.257 0.011
17 2.500 0.222 0.266 0.024
18 2.500 0.333 0.276 0.037
19 2.500 0.444 0.287 0.051
20 2.500 0.556 0.298 0.066
21 2.500 0.667 0.310 0.083
22 2.500 0.778 0.323 0.101
23 2.500 0.889 0.338 0.120
24 2.500 1.000 0.354 0.141
25 2.500 1.111 0.371 0.165
26 2.500 1.222 0.390 0.191
27 2.500 1.333 0.411 0.219
28 2.500 1.444 0.434 0.251
29 2.500 1.556 0.461 0.287
30 2.500 1.667 0.490 0.327
31 2.500 1.778 0.524 0.372
32 2.500 1.889 0.562 0.425
33 2.500 2.000 0.606 0.485
34 2.500 2.111 0.658 0.555
35 2.500 2.222 0.718 0.639
36 2.500 2.333 0.791 0.738
37 2.500 2.444 0.878 0.858
38 2.500 2.444 0.985 0.963
39 2.500 2.333 1.118 1.043
40 2.500 2.222 1.286 1.143
41 2.500 2.111 1.500 1.267
42 2.500 2.000 1.768 1.414
43 2.500 1.889 2.080 1.572
44 2.500 1.778 2.372 1.687
45 2.500 1.667 2.500 1.667
46 2.500 1.556 2.372 1.476
47 2.500 1.444 2.080 1.202
48 2.500 1.333 1.768 0.943
49 2.500 1.222 1.500 0.733
50 2.500 1.111 1.286 0.572
51 2.500 1.000 1.118 0.447
52 2.500 0.889 0.985 0.350
53 2.500 0.778 0.878 0.273
54 2.500 0.667 0.791 0.211
55 2.500 0.556 0.658 0.160
56 2.500 0.444 0.658 0.117
57 2.500 0.333 0.606 0.081
58 2.500 0.222 0.562 0.050
59 2.500 0.111 0.524 0.023
60 2.500 0.000 0.490 0.000

Table II.
Values of Ĉ0p; Ĉ

0
pk; Ĉ

0
pm;

and Ĉ0pmk for processes
with T = 45, Up ÿ Lp

= 0.8d, Up ± M = 0.5d,
M ± Lp = 0.3d and
15 � M � 60
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histogram of the data from the shifted process A1. Figure 2(c) displays the
histogram of the data from the shifted process A2. Figure 2(d) displays the
histogram of the data from the shifted process A3.

M Ĉ00p Ĉ00pk Ĉ00pm Ĉ00pmk

15 1.667 0.000 0.220 0.000
16 1.667 0.056 0.228 0.008
17 1.667 0.111 0.236 0.016
18 1.667 0.167 0.244 0.024
19 1.667 0.222 0.253 0.034
20 1.667 0.278 0.263 0.044
21 1.667 0.333 0.274 0.055
22 1.667 0.389 0.286 0.067
23 1.667 0.444 0.298 0.080
24 1.667 0.500 0.312 0.094
25 1.667 0.556 0.327 0.109
26 1.667 0.611 0.343 0.126
27 1.667 0.667 0.362 0.145
28 1.667 0.722 0.382 0.165
29 1.667 0.778 0.404 0.189
30 1.667 0.833 0.429 0.215
31 1.667 0.889 0.458 0.244
32 1.667 0.944 0.490 0.278
33 1.667 1.000 0.527 0.316
34 1.667 1.056 0.570 0.361
35 1.667 1.111 0.619 0.413
36 1.667 1.167 0.677 0.474
37 1.667 1.222 0.745 0.547
38 1.667 1.278 0.827 0.634
39 1.667 1.333 0.925 0.740
40 1.667 1.389 1.041 0.868
41 1.667 1.444 1.179 1.021
42 1.667 1.500 1.333 1.200
43 1.667 1.556 1.491 1.391
44 1.667 1.611 1.617 1.563
45 1.667 1.667 1.667 1.667
46 1.667 1.556 1.491 1.391
47 1.667 1.444 1.179 1.021
48 1.667 1.333 0.925 0.740
49 1.667 1.222 0.745 0.547
50 1.667 1.111 0.619 0.413
51 1.667 1.000 0.527 0.316
52 1.667 0.889 0.458 0.244
53 1.667 0.778 0.404 0.189
54 1.667 0.667 0.362 0.145
55 1.667 0.556 0.327 0.109
56 1.667 0.444 0.298 0.080
57 1.667 0.333 0.274 0.055
58 1.667 0.222 0.253 0.034
59 1.667 0.111 0.236 0.016
60 1.667 0.000 0.220 0.000

Table III.
Values of Ĉ00p ; Ĉ

00
pk; Ĉ

00
pm;

and Ĉ00pmk for processes
with T = 45, Up ÿ Lp

= 0.8d, Up ± M = 0.5d,
M ± Lp = 0.3d and

15 � M � 60
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Table V displays the characteristics of the data for processes A, A1, A2, A3, the
values of Clements' estimators, the modified estimators, and the new
estimators. We note that for Clements' estimators, Ĉpm detects the shifts of A1,
A2, and A3. But, Ĉpm fails to differentiate the high-quality process A2 (with 100
percent process yield) from the low-quality process A3 (with only 50 percent
process yield), as Ĉpm = 0.647 for both A2, and A3. Therefore, we consider the
estimator Ĉpm as inaccurate. For the modified estimators, Ĉ0pm , and Ĉ0pmk detect
the shifts of A1, A2, and A3. But, Ĉ0pm fails to differentiate the high-quality
process A2 (with 100 percent process yield) from the low-quality process A3

(with only 50 percent process yield), as Ĉ0pm = 0.647 for both A2, and A3.
Therefore, we consider the estimator Ĉ0pm as inaccurate. On the other hand, the
new estimators detect the shifts of A1, A2, and A3. The new estimators also

M Ĉ00p Ĉ00pk Ĉ00pm Ĉ00pmk

15 1.667 0.000 0.220 0.000
60 1.667 0.000 0.220 0.000

17 1.667 0.111 0.236 0.016
59 1.667 0.111 0.236 0.016

19 1.667 0.222 0.253 0.034
58 1.667 0.222 0.253 0.034

21 1.667 0.333 0.274 0.055
57 1.667 0.333 0.274 0.055

23 1.667 0.444 0.298 0.080
56 1.667 0.444 0.298 0.080

25 1.667 0.556 0.327 0.109
55 1.667 0.556 0.327 0.109

27 1.667 0.667 0.362 0.145
54 1.667 0.667 0.362 0.145

29 1.667 0.778 0.404 0.189
53 1.667 0.778 0.404 0.189

31 1.667 0.889 0.458 0.244
52 1.667 0.889 0.458 0.244

33 1.667 1.000 0.527 0.316
51 1.667 1.000 0.527 0.316

35 1.667 1.111 0.619 0.413
50 1.667 1.111 0.619 0.413

37 1.667 1.222 0.745 0.547
49 1.667 1.222 0.745 0.547

39 1.667 1.333 0.925 0.740
48 1.667 1.333 0.925 0.740

41 1.667 1.444 1.179 1.021
47 1.667 1.444 1.179 1.021

43 1.667 1.556 1.491 1.391
46 1.667 1.556 1.491 1.391

Table IV.
The values of the new
estimators for
processes with
(�A ÿ T�=D�

� �T�B�=Dl
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differentiate process A2 from process A3 (except for Ĉ00p which never takes into
account the process median and the target value, hence provides no sensitivity
to process departure at all).
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Figure 2(b)
The shifted process A1

with median M1 = 49,
Up = 58 and Lp = 43
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Figure 2(c)
The shifted process A2

with median M = 40, Up

= 49 and Lp = 34
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Figure 2(d)
The shifted process A3

with median M3 = 60,
Up = 69, and Lp = 54
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Figure 2(a)
The on-target process A

with median M = 50,
Up = 59, and Lp = 44
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5. An application
To illustrate how the generalizations may be applied to the actual data
collected from the factories, we present a case study on a MOSFET (metal-
oxide-silicon field effect transistor) manufacturing process. The case which we
studied was taken from an IC factory (located in Taiwan) which manufactures
various types of semiconductor products. MOSFET is often applied on SRAM
(static random access memory), DRAM (dynamic random access memory), and
other IC products as an inverter or switch.

MOSFET has four terminals including:

(1) source (source of current);

(2) drain (destination of current);

(3) gate (switch);

(4) bulk (ground site).

An important function of the MOSFET is to control the current from the source
terminal to the drain terminal. The threshold voltage Vt is one of the key
parameters which determines the specifications of MOSFET. If the gate voltage
is greater than the threshold voltage Vt, then an inversion layer is formed and
the MOS channel (from the source to the drain) is turned on. On the other hand,
if the gate voltage is smaller than the threshold voltage Vt, then no inversion
layer is formed and the MOS channel is turned off. For the circuits to function
properly, the threshold voltage Vt should be kept as low as possible to increase
the transistor current driving capability. In the high-speed memory IC
applications, the upper and lower specification limits, USL and LSL, for a
particular model of MOSFET, the threshold voltages Vt are set to 0.5V and 0.7V
respectively, where the target value T is set to 0.55V. The collected sample data

A A1 A2 A3

M 50 49 40 60
Up 59 58 49 69
Lp 44 43 34 54

Ĉp 2.667 2.667 2.667 2.667
Ĉpk 1.111 1.222 2.222 0.000
Ĉpm 2.666 2.476 0.647 0.647
Ĉpmk 1.111 1.160 0.639 0.000

Ĉ0p 2.667 2.667 2.667 2.667
Ĉ0pk 1.333 1.467 2.666 0.000
Ĉ0pm 2.667 2.476 0.647 0.647
Ĉ0pmk 1.333 1.362 0.647 0.000

Ĉ00p 1.333 1.333 1.333 1.333
Ĉ00pk 1.333 1.289 0.889 0.000
Ĉ00pm 1.333 1.289 0.468 0.165
Ĉ00pmk 1.333 1.245 0.312 0.000

Table V.
Values of the
estimators for
processes A, A1,2 and
A3 with M = 50,
M1 = 49, M2 = 40
and M3 = 60, where
(LSL, T, USL)
= (20, 50, 60)
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(a total of 80 observations) are displayed in Table VI. This is a non-normal
distribution (based on the 80 observations).

Figure 3 displays the histogram of the collected data. Figure 4 displays the
corresponding box plot. Figure 5 displays the normal probability plot for the 80
observations. We perform Shapiro-Wilk test for normality check, obtaining W = 0.93
with p-value = 0.0002. We also perform Pearson's Chi-square test using the partition
{0.553, 0.571, 0.589} obtaining Pearson �2 = 10 with p-value = 0.0016. Since the
p-values are sufficiently small for both tests, we may conclude that the data set
comes from a non-normal distribution. To calculate the values of the estimators Ĉ}p,
Ĉ}pk, Ĉ}pm and Ĉ}pmk, we first proceed with calculating the following, and check
Gruska et al. table (1989) to find Up, Lp, and the sample median M obtaining:

Sample mean 0.571

Sample standard deviation 0.026

Sample skewness 0.662

Sample kurtosis ±0.252

Sample median M 0.576

99.865 percentile Up 0.652

0.135 percentile Lp 0.534

We then calculate du = USL ± T = 0.7 ± 0.58 = 0.12, dl = T ± LSL = 0.58 ± 0.5 =
0.08, d = (USL ± LSL)/2 = (0.7 ± 0.5)/2 = 0.1, d* = min {du, dl} = 0.08, and a =
max{d (M ± T)/du, d (T ± M)/dl} = max {0.1 (0.576 ± 0.580)/0.12, 0.1 (0.580 ±
0.576)/0.08} = 0.005. We also calculate Up ± Lp = 0.118, (Up ± Lp) 6 = 0.02, d*/du

= 0.667, and d*/dl = 1.00. Substituting these values into the definitions of the
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53 55 57 59 61 63 64

Figure 3.
Histogram of the

collected data

0.53 0.53 0.53 0.54 0.54 0.54 0.54 0.54 0.54 0.54
0.54 0.54 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.55
0.55 0.55 0.55 0.55 0.55 0.55 0.56 0.56 0.56 0.56
0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58
0.59 0.59 0.59 0.59 0.59 0.60 0.60 0.60 0.60 0.60
0.61 0.61 0.61 0.61 0.62 0.62 0.62 0.62 0.62 0.62

Table VI.
Values of Vt (threshold

voltage) of MOSFET



IJQRM
16,5

520

new estimators, we obtain

Ĉ}
p �

2� 0:1

0:118
� 1:695

Ĉ}
pk � min

0:7ÿ 0:576

0:059
� 0:667;

0:576ÿ 0:05

0:059
� 1

� �
� 1:288

Ĉ}
pm �

2� 0:08

6
����������������������������
0:022 � 0:0052
p � 1:294

Ĉ}
pmk � min

0:7ÿ 0:576

3
����������������������������
0:022 � 0:0052
p � 0:667;

0:576ÿ 0:5

3
����������������������������
0:022 � 0:0052
p

� �
� 1 � 1:229

We also calculate the four index values using the original Clements' and the
modified Clements' methods, obtaining Ĉp = 1.695, Ĉpk = 1.632, Ĉpm = 1.646,
Ĉpmk = 1.609, the modified Clements' estimators, Ĉ0p = 1.695, Ĉ0pk = 1.288, Ĉ0pm =
1.646, Ĉ0pmk = 1.251. We note that all four index values are greater than 1.00.
Thus, we conclude that the process is capable (adequate with respect to the
given manufacturing specifications). In fact, there are zero observations falling
outside the specification interval (LSL, USL).

In this example, the process variation is small relative to the specification
tolerance (Ĉ}

p = 1.695). The process departure is also relatively insignificant
(max {(0.576 ± 0.580)/0.12, (0.580 ± 0.576)/0.08} = 0.05). Therefore, the four
index values calculated using three different methods are not significantly
different from each other. But, if a process shift occurs, then only the proposed
generalization can detect such changes. In this case, the index values calculated
using the proposed generalization would significantly decrease.

53 55 56.5 59 64

Figure 4.
The box plot of the
collected data
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Figure 5.
The normal probability
plot of the collected data
(80 observations)
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6. Conclusion
For non-normal Pearsonian processes, Clements (1989) proposed a method for
calculating estimators of the two basic process capability indices Cp and Cpk.
Pearn and Kotz (1994) applied Clements' method to obtain estimators for the
other two more advanced process capability indices Cpm and Cpmk.
Unfortunately, their investigation was restricted to processes with symmetric
tolerances. In this paper, we considered a generalization of Clements' method to
handle cases with asymmetric tolerances. The generalization takes into account
the asymmetry of the tolerances. Comparisons between the generalization and
the original Clements' method are provided. The results showed that the
proposed generalization is more sensitive than the original Clements' and the
modified Clements' methods in detecting process shift. The results also showed
that the proposed generalization is more accurate than the original Clements'
and the modified Clements' methods in measuring process capability.
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